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Modeling of Discontinuities in General Coaxial
Waveguide Structures by the FDTD-Method

Jan Van Hese, Student Member, IEEE, and Daniel De Zutter

Abstract—The finite difference time domain (FlllTD)-method
is applied to model generalized couxial waveguicle structures
with discontinuities. The cross-section of the waveguide con-
sists of a closed outer conductor and one or two inner conduc-
tors of arbitrary shape. The cross-section can have any number
of dielectric materials with losses. The singular field-behavior
near sharp edges is explicitly included in the finite-difference
scheme. Any kind of discontinuity can be handledl: changes in
cross-section as well as changes of material parameters. From
the time-domain data, frequency-dc~main data (S-parameters)
are obtained using Fourier-transfor]m techniques.

I. 1NTRODUCTION

IN HIGH-SPEED digital systems, the problem of inter-
connecting different sub-systemls (on chip level or board

level) forms a very important design topic. The accurate
knowledge of the high-frequency behavior of typical dis-
continuities s,uch as connectors and of other changes in
the transmission path, becomes more and more important.
However, the modeling of such structures is not an easy
task. Due to the complexity and the diversity of the phys-

ical structures and the typical three-dimensional nature of

the problem, only few of the classical modleling-tech-

niques are suitable. In this paper we opt for the finite-

difference time-domain (FDTD)-method [1] which was

first proposed by K. S. Yee in 1966 and has been used

extensively by many investigators to solve scattering [2],

penetration and radiation [3], [4] and microstrip discon-

tinuity problems [5], [6]. In this technique, the Maxwell

time-dependent curl equations are solved using finite-dif-

ference techniques. In this paper we will use the method

to model closed generalized coaxial waveguidc structures

with discontinuities. Fig, 1 shows a typical example of

the pliysical structures under studly. Using the FDTD-al-
gorithm we typically get time-domain reflection and
transmission data for an arbitrary input time-function, but
it is possible to derive frequency domain data from these
time-domain data using Fourier transform techniques [6].

In this paper, we present three examples. In a first ex-
ample we analyse a simple test structure consisting of a
straight coaxial waveguide-structure with a discontinuity
that can be described as a change in impedance level. We
compare the data obtained with our FDTD-innplementa-
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Fig. 1. Typical example of the physical structures under study.

tion with theoretical results obtained with techniques used
in classical circuit theory. In the second example, we ex-
amine the influence of a cylindrical bend on the propa-
gation properties of a coaxial waveguide structure with
rectangular cross-section. To do this we use an extension
of the original FDTD-discretization scheme to cylindrical
coordinates. This modified discretization scheme will be
described in Section III. In the third example, we show
the simulation results for the odd mode of a twinaxial
transition structure consisting of two signal conductors
with a continuous change in cross-section.

II. l?ORMULATION OF THE PROBLEM

We now give a more complete description of the type
of physical structures we are focusing on in this paper.
We are studying coaxial waveguide-structures. The cross-
sections of the waveguide-stntctures consist of a closed
outer conductor with an arbitra~ shape, and one or two
inner signal conductors also with an arbitrary shape (see
Fig. 2). In the case of two inner signal conductors, the
physical structure is assumed to be symmetrical, and the
propagation of the even and odd mode can be simulatetl.
In between the perfectly conducting inner and outer walls,
different dielectric materials with losses can be present.
In the direction of propagation, the structure can be
straight or bent and can have all kinds of discontinuities
such as changes in cross-section and/or in dielectric ma-
terial.

In the sequel,’ the structure described above will be
called the transition-section (see Fig. 3). In Fig. 3 this
transition-section is located between the planes BB and
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Fig. 2. Cross-sections of the waveguide structures under study. (a) Single
signal conductor. (b) Two signal conductors,
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Fig. 3. Input-section, transition-section and output-section.

CC. In order to simulate the influence of this transition-
section on signal propagation, we extend that section with
an input-section between planes AA and BB and an output
section between planes CC and DD. These sections are
straight, semi-infinite and have a constant cross-section.
The semi-infinite length is simulated using the so called
‘absorbing boundaries’ [7] at planes AA and DD. It is
necessary to introduce these two sections because of the
following reason. In the input-section we select an input
plane (II in Fig. 3) where we inject a time-dependent in-
put-field. The spatial distribution of this input-field over
the cross-section of the input plane II is that of the basic
TEM-mode supported by the input section. This input-
field will propagate through the input-section towards the
transition-section which contains the discontinuity we are
investigating. Once the input-field reaches the disconti-
nuity, reflections will occur. Due to the disturbance of the
field-pattern in the cross-section, these reflections also
contain higher order modes. This is also the case for the
signal transmitted to the output-section. We propose to
characterize the whole structure under study by examin-
ing the reflection and transmission in terms of the ampli-
tude of the injected basic TEM-mode. Provided we make
the input-section and output-section long enough, we will
be able to find observation points (see Fig. 3) in the input-
section and output-section (far enough from the discontin-
uities in the transition-section), where only the basic
TEM-mode exists. In these observation points, the higher
order modes generated by the transition will have van-
ished since these modes are excited below the cut-off fre-
quency. This way of looking at the problem implies that
the time-dependence of the input-field is such that the fre-

quencies contained in it are lower than the cutoff fre-
quency of the first higher order mode.

111, APPLICATION OF THE FDTD-ALGORITHM

1. FDTD Discretization Scheme in Cartesian and
Cylindrical Coordinates

The formulation of the FDTD-solution method starts
with the time-dependent Maxwell curl equations:

WA Y, z)
Po ~t = –V x e(x, Y, z, t)

de(x, y, z, t)
q)e,(x, y, z)

at

~ ‘v x h(x, y, Z, t) – U(X,y, .2)e(x, y, z, d (1)

where POand co are the permeability and dielectric con-
staot of vacuum and where c, (.x, y, Z) and O(X,y, Z) are
the relative dielectric constant and the conductivity of the

material, which can both be a continuous function of the

spatial coordinates x, y and z. We restrict ourselves to

nonmagnetic materials.

The propagation of the input-field is simulated using

finite-differences in the three different sections. In the in-

put-section and the output-section, we use a discretization

scheme in Cartesian coordinates. lrt the transition-sec-

tion, we can either use a Cartesian coordinate system or

a cylindrical coordinate system to describe the field prop-

agation. The choice of the coordinate system depends on

the shape of the discontinuity in the transition-section. The

equations of the FDTD-discretization scheme in Carte-
sian coordinates are found in the classical way [1], [2] and
are given in Appendix I. The discretization scheme in cy-
lindrical coordinates is found in exactly the same way.
We hereby start from the Maxwell time-dependent curl
equations in cylindrical coordinates r, 0, x. The original
Yee-unit cell in Cartesian coordinates [1], [2] is general-
ized as shown in Fig. 4. The FDTD-discretization equa-
tions in cylindrical coordinates are given in Appendix II.
We will use the discretization scheme in cylindrical co-
ordinates for our first example in which the influence of a
cylindrical bend will be calculated.

It can be shown that the equations of the FDTD-discre-
tization scheme satisfy the divergence equations V o (ee)
= O and V . (p h) = O which is proven in Appendix III.
Since we use a staggered grid in both the FDTD-discre-
tization schemes (cylindrical and Cartesian), no spurious

modes can occur as is stated in [8].

2. Connection of Discretization Schemes in Cartesian
and Cylindrical Coordinates

In order to implement the simulation of a three-dimen-
sional structure with a cylindrical bend as shown in Fig.
5, we need to derive a special transition formula at planes
BB and CC which correctly connects the sections de-
scribed in different coordinate systems [9]. The typical
structure of Fig. 5 starts with an input section described
in Cartesian coordinates, is followed by a corner section
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Fig. 4. Yee-unit cell in cylindrical coordinates.
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Fig. 5. Three dimensional structure with a cylindrical bend

Fig. 6. Transition between the FDTD-scheme in Cartesian and cylindrical
coordinates.

in cylindrical coordinates and ends with an output section

again in Cartesian coordinates, The transition formula

should not introduce any parasitical reflections, nor make

the FDTD-scheme divergent, To obtain this, it is neces-

sary to derive a transition formula which is at least of

section order accuracy both in time and space,

To derive the transition formula, we focus on the situ-

ation shown in Fig. 6, which represents the transition be-

tween the scheme in Cartesian and cylindrical coordi-

nates. The function g represents an arbitrary field-

component. In the FDTD.discretization scheme, we typ-

ically need the derivative [dg /dz] (0). To evaluate this de-

rivative at the transition point T, we expand the function

values g ( – 2) and g ( – 1) (from the Cartesian coordinate

system) and g(1) and g(2) (from the cylindrical coordi-

nate system) as Taylor series centered around T:

ag AZ* a2g
g(–z) = g(o) – ?azjp) + 97j-#o) + o(&3)

622 a2g
g(–1) = g(o) – 62*(O) + -y-j-p + 0(6Z3)

ag
g(1) = g(o) + &$ ~(o) + :*(O) + o(/i@3)

g(1) = g(o) + 3 /i@*(O) + 9:3(0) + O(arjs)

(2)

After elimination of the second order derivatives
[t32gldz2 ](0), [d2g/~@2 ](0) and of g(0) (this value is
usually not known in the finite-difference scheme) from
the equations in (2), we obtain the following expression
for the first order derivative of g:

: (o) =
9g(l) – 9g(–1) – g(2) + g(–2)

3(~z + R 64)

+ 0(6Z2, &@2) (3)

Notice that the resulting formula is of second order ac-

curacy in both 6Z and &#I. This is the general formula that

is applied to connect the meshes in Cartesian and cylin-

drical coordinates. The applicability of this formula is

demonstrated in example 1 presented in Section V below.

3. Input-Field Distribution and its Time-Dependence

As explained before, the input-field distribution which
is injected in the input-section is chosen to be the basic
TEM-mode of the cross-section. This mode is calculated
using a special purpose capacitance program which was
developed to calculate the capacitance of arbitrary shaped
two dimensional structures. The capacitance program,
which basically uses an integral equation technique com-
bined with point-matching, calculates the charge density
on the conductors in the two dimensional cross-section.
This approach was extensively checked [7]. Details will
be presented in a forthcoming publication. Knowing the
charge density distribution, it is possible to calculate the
amplitudes of the transverse field-components of the
TEM-mode. The time-dependence of the input-field is ar-
bitra~ but subjected to the restrictions mentioned at the
end of Section II. In the examples, we have used a Gauss-
ian time-dependence.

4. Absorbing Boundary Conditions

The input-section and output-section we added to the
physical structure are semi-infinite straight waveguide
structures. Since the FDTD-method is basically a discre-
tization method, only a limited simulation space can be
taken into account. Therefore, we have to simulate the
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infinite length of input-section and output-section. This is

done using so called absorbing boundary conditions [10]

at the planes AA and DD in Fig. 3. In our applications,

we can use first order boundary conditions because we

know by construction the direction of the incident wave

at the boundaries AA and DD. Let us focus on the input-

section. Only TEM-waves going in the direction from BB

to AA have to be absorbed at AA. In the sequel this di-

rection will be indicated as the ( – z)-direction. The prop-

agation of a mode .JO, Y, z, t) traveling in the

( –z)-direction satisfies (4) in each (x, y)-plane:

()a 1 ~ f(x, y, z, t) = o.%–;at
(4)

In (4) v is the propagation speed of the considered mode
in the input section, If the input-section is homogeneously
filled with a medium with a relative dielectric constant e,
then v is given by co/& where co is the free-space ve-
locity of light. Using the classical approximating finite-
difference equations for the time and spatial derivatives
[2], and using linear interpolation formulas, we obtain the
following discrete approximating formulas for the trans-
verse electric field-components:

e:+ ‘(i + 0.5, j, 1)

u&-8
/ = e~(i + 0.5, j, 2) +

U(Y+8

. [e;+ ‘(i + 0.5, j, 2) – e~(i + 0.5, j, 1)] (5)

e$+’(i, j + 0.5, 1)

v&-13
= e~(i, j + 0.5, 2) +

v&+13

“ [e~+’(i, j + 0.5, 2) - e~(i, j + 0.5, l)]. (6)

The implementation of (5) and (6) simulates the absorbing
boundary at plane AA of the input-section. Similar equa-
tions are used to simulate the infinite length of the output-
section.

5. Influence of Singular Field-Behavior

To improve the accuracy of the finite-difference scheme
in structures with cross-sections with sharp metallic edges,
we explicitly introduce the influence of the singularities
in the FDTD-scheme. This is done by imposing special
formulas in the calculation of the field-components near
the sharp edges. Suppose we have a metallic edge as
shown in Fig. 7. The metal conductor is aligned with the
grid. Hence we can impose the boundary condition at the
perfect conductor by requiring the tangential electric field-
components at the boundary to be zero. However, for
field-components in the direct vicinity of the sharp edges,
another approach has to be followed [11]. To derive the
formulas to calculate the hX- and hY-field components in
the neighborhood of P shown in Fig. 7, we start from the
Laurent series expansions of the h.-, hY-, and e,-field com-
ponents [12]. These Laurent series expansions (which in-

t
Y

Fig. 7. Singularities of the electromagnetic field near sharp edges.

elude the singular behavior) are substituted in the Max-
well curl equations. Only the leading terms are taken into
account. As a result, we obtain the following equations
which determine the h,- and hY-field components near the
sharp edge:

h~+a’(i,j + 0.5, k + 0.5)

—— h~-05(i,j + 0.5, k + 0.5)

&— — U2‘-”e~(i, j + l,k + 0.5)
/Jo 6

St
+ — [e~(i, j + 0.5, k + 1)

po d

– e~(k, j + 0.5, k)] (7)

h~+os(i + 0.5, j, k + 0.5)

—– h~-05(i + 0.5, j, k + 0.5)

C3t
+— V2‘-ue~(i + l,j, k + 0.5)

/Jo 6

+ ~ [e~(i + 0.5, j, k)

– e~(i + 0.5, j, k + 1)] (8)

In (7) and (8), u takes the value 213 if 13 = 90°. Com-
paring (7) and (8) with the original discretized equations
(A4) and (A5) from Appendix I leads to the conclusion
that the new equations (7) and (8) are obtained by intro-
ducing a singularity factor U21‘“ [1 1].

6. Evaluating the Simulation Results, Mode Amplitudes,
Propagated Power

To obtain the amplitude of the basic propagating TEM-
mode as a function of time in the input-section and output-
section, the following procedure is followed. We calcu-
late the propagated power in the observation planes in the
input-section and output-section as a function of time.
This is done by integrating Poynting’s vector over the en-
tire cross-section. If we assume that in the observation
points only the basic TEM-mode is propagating (see Sec-
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tion II), the amplitude of this TEM-mode is proportional
to the square root of the propagated power. IBy normal-
izing the obtained amplitude data to the maximum ampli-
tude of the incident signal we finally get the results as
presented in the following section.

IV. NUMERICAL 13XAMPLES

In this section three examples are presented. The first
one is a simple waveguide filled with a dielectric material
over a certain length. This example is used to demonstrate
the accuracy of our method by comparing the numerically
obtained S-parameters with their analytical values. The
second example, a cylindrical y ‘bent coaxial waveguide
structure, illustrates both the ability to deal with cylindri-
cal coordinates and with non-disturbing transitions be-
tween cylindrical and Cartesian coordinates. The last ex-
ample, a twinaxial transition section between signal
conductors with rectangular cross-section and circular
cross-section, illustrates the capability of our a~pproach to
deal with complex geometries.

1. Test Example: Filled Rectangular Waveguide

The geomet~ of this example is that of a rectangular
TEM-waveguide, where we introduce a section of finite
length with a different dielectric constant. Fig. 8 shows
the geometry of the waveguide (a) and its cross-section
(b). We have chosen this example because it allows us to
compare the results obtained with the implemented
FDTD-program and theoretically obtained results. To do
this we first calculate the reflection and transmission re-
sponses in the time-domain using a Gaussian input-field
time-dependence with a width of 30 ps. We define the
width of the Gaussian to be the 5 % width i.e., 0,05 times
its maximum value. These time-domain results are shown
in Fig. 9. From these time-domain results, we’ calculate
the S-parameters as a function of frequency, using fast
Fourier transform techniques. The amplitude of S1, and
S21are plotted up to 70 GHz. These S-parameters can also
be calculated directly using the classical techniques of cir-
cuit theory. In this case we model the waveguid.e structure
of Fig. 8 as a cascade of transmission lines, with the same
impedances and electrical lengths as the different sections
of the waveguide structure itself. The resulting
S-parameters can be expressed as a function of the imped-
ances Zo, Z, of the different cross-sections and the prop-
agation delay ~ of the section filled with dielectric mate-
rial using the formulas:

()Zo z, 2
%–z sin2 (2m~7)

ls,,(f)12 = —

(r
4 + ~ – ~ sin2 (2TJPT)

ls2,(f)12 = 1- ls,,(f)12 (9)

In our case, we have to insert the following values which
we got from our capacitance program [7]: Z. := 27.60 !2,

s,= 1.
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Fig. 8. (a) Test example. (b) Cross-section of the test example,
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Fig. 9. Amplitude of the input-field and the reflected field in the input-
section and of the transmitted field in the output-section for the structure
of Fig. 8.

Z, = 19.520 and ~ = 19.79 ps. The theoretically cal-
culated S-parameters are shown in dashed lines on Fig.
10 and are compared with the S-parameters obtained using
the time-domain data (full lines). We see that there is an
excellent agreement up to 60 GHz.

2. Cylindrically Bent Structure

As a second example, we give the simulation results
for the cylindrically bent coaxial waveguide of Fig. 5.
The input-field has a Gaussian time-dependence with a
width of 60 ps. The dimensions of the coaxial cross-sec-
tion are: outer conductor with height 88 = 6.66 mm and
width 106 = 8.33 mm; inner conductor with height 4 d
– 3.33 mm and width 68 = 5.00 mm. The elementary—

spatial step 6 = 0.833 mm, the elementary time-step /it
= 1 ps and the radius of the bend R = 10 mm. Fig. 11
shows the time-dependence of the amplitude of the basic
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Fig. 10. S-parameters for the structure of Fig. 8; full lines: results
obtained using the time-domain data of Fig. 9; dashed lines: analytical

results.
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Fig. 11. Amplitude of the input-field and the reflected field in the input-
section for a = 45° and 90°.

TEM-rnode in the input-section for two values of a: 450
and 90°. From O to 100 ps, the Gaussian input-field is
seen, after 100 ps the reflected field appears. Fig. 12
shows the time-dependence of the amplitude of the basic
TEM-mode in the output-section after transmission
through the corner-section for three values of CY:0°, 450
and 900. For a = 00 the input-field is transmitted without
disturbance to the output-section. The cylindrical bend is
perfectly described by the different sections. No approx-
imations have to be made to describe the physical struc-
ture in the used coordinate systems. Taking more cells to
discretize the coaxial structure is not necessary due to the
fact that the singular field behavior near the sharp edges,
where there is a strong concentration of the fields, is ex-
plicitly introduced in the FDTD-scheme. The authors
thoroughly searched literature for other numerical or ex-
perimental data on coaxial bent waveguides. However, no
suitable comparison material could be found. We invite
the reader to critically examine the results given in this
paper and to inform the authors about existing results that
escaped our attention.

3. Twinaxial Transition Section

In the last example, we present the results for the sym-
metrical structure of Fig. 13(a). In the transition-section,

NortnaIized

amplitude
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.7-
!i

.— --
1:

~=(y

.6-
!i !\, —
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Fig. 12. Amplitude of the transmitted field in the output-section for a =
0°, 45° and 90°.

D

input-

(a)

14.69 mm 14.69 mm

cross-section cross-section

input-section output-section

(b) (c)

Fig. 13. (a) Twinaxial transition section, (b) cross-section at the input, (c)
cross-section at the output.

we have a continuous change from the cross-section at
the input section as shown in Fig. 13(b) to the cross-sec-
tion at the output as shown in Fig. 13(c). The transition
takes place over 10 elementary space steps i.e., 5.25 mm.
The dimensions of the input-section and output-section
are shown on the figures. The input-field has a Gaussian
time-dependence with a 5 % width of 40 ps. The elemen-
tary spatial step is equal to 0.262 mm; the elementary
timestep is 0.5 ps. Fig. 14 shows the simulation results
for the odd TEM-mode of the symmetrical waveguide.
The full line in Fig. 14 shows the time-dependence of the
injected input-field and the reflected field. The dashed line
represents the field in transmission. In Fig. 15, we give
density plots of Poynting’s vector in the cross-section of
the input-section (a) and of the output-section (b). These
plots are made in regions in the structure where only the
basic TEM-modes are propagating. In the density plots,
the black areas in the centre represent the signal conduc-
tors where the propagated power is zero. The white areas
represent maxima of the propagated power, i.e. a concen-
tration of the field components. In Fig. 15(a), we clearly
see the effect of the singular field-behavior near the sharp
edges of the inner signal conductors. In Fig. 15(b), this
effect is also seen as an unwanted effect caused by the
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ted field for the odd mode.

(a)

(b)

Propagated power for the example of Fig. 13. (a) Cross-section at the input. (b) Cross-section at the {)Utput

approximation of the circular signal conductors by tlhe
rectangular unit cells of the FDTD-scheme,

V. CONCLUSION

The FDTD-method can be used to model closed gen-

eralized coaxial waveguide structures with any kind and

any number of discontinuities. The applicability of tlhe

method has been illustrated with three examples which
show that our implementation of the FDTD-method is a
powerful tool for modeling a great variety of structures.

APPENDIX I

The finite-difference equations in Cartesian coordinates
are given by
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e:+ ’(i + o.5, j, k)

(=~_o(i + 0.5,j,k) &)e’J!(z’+ 0.5, j, k)
Eoer(i + 0.5, j, k)

&
+

qf,(i + 0.5,j,k) 8

“ [h; ’05 (i + o.5, j + 0.5, k)

— h“+o’(z’ + 0.5, j – 0.5, k)2

+ h;+os (i + 0.5, j, k – 0.5)

–h ~+05(i + 0.5, j, k + 0.5)] (Al)

e~+’(i, j + 0.5, k)

(=l–
o(i, j + 0.5, k) &

)
e~(i, j + 0.5, k)

~oe,(i, j + 0.5, k)

&
+

co~,(i, j + 0.5, k) 6

. [k“+05(i, j + 0.5, k + 0.5)

— h~+o’(i, j + 0.5, k – 0.5)

+ h;+ 05(i – 0.5, j + 0.5, k)

–h ~+05(i + 0.5, j + 0.5, k)] (A2)

e~+’(i, j, k + 0.5)

(= ~ _ o(i, j, k + 0.5) dt

~O~,(i,j, k + 0.5) )
e~(i, j, k + 0.5)

&
+

coe,(i, j, k + 0.5) 6

“ [k~+o’(i + 0.5, j, k + 0.5)

– h;+ 05(i – 0.5, j, k + 0.5)

+ h;+ 05(i, j – 0.5, k + 0.5)

– h~+05(i, j + 0.5, k + 0.5)] (A3)

/z~+05(i, j + 0.5, k + 0.5)

. h~-o’s(i, j + 0.5, k + 0.5)

+ ~ [e~(i, j + 0.5, k + 1)

– e~(i, j + 0.5, k) + e~(i, j, k + 0.5)

– e~(i, j + 1, k + 0.5)] (A4)

hJ+05(i + 0.5, j, k + 0.5)

—– h~-o’(i + 0.5, j, k + 0.5)

+ ~ [e~(i + 1, j, k + 0.5)

– e~(i, j, k + 0.5) + e~(i + 0.5, j, k)

– e{(i + 0.5, j, k + 1)] (A5)

hj+05(i + 0.5, j + 0.5, k)

——h~-05(z’+ 0.5, j + 0.5, k)

+ ~ [ef(i + 0.5,j + 1, k)

– e~(i + 0.5, j, k) + e~(i, j + 0.5, k)

– e~(i + l,j + 0.5, k)] (A6)

where & is the elementary time-step, 6 is the elementary

spatial step in the x-, y- and z-direction; o (i, j, k) and e, (i,
j, k) are the conductivity and the relative dielectric con-
stant of the material at coordinates (i ~, j 6, k 6).

APPENDIX II

The finite-difference equations in cylindrical coordi-
nates are given by

e~+’(i + 0.5, j, k)

(=~_a(i + 0.5, j, k) &

)
e~(i + 0.5, j, k)

~oq(i + 0.5, j, k)

&
+

()
~+~

eoer(i + 0.5, j, k) 2~

. h$+05(i + 0.5, j + 0.5, k)

&
+ ()11 ——

eo~,(i + 0.5, j, k) ~ 6X

“h ~+0”5(i+ 0.5, j – 0.5, k)

&
+

eo~,(i. + 0.5, j, k)rJ 6@

‘ [h;+0”5(i + 0.5, j, k – 0.5)

— h~+05(i+ ().5, j, k + 0.5)] (A7)

e~+’(i, j + 0.5, k)

(=l–
u(i, j + 0.5, k) &

)
e~(i, j + 0.5, k)

Eoer(i,j + 0.5, k)

&
+

co~,(i, j + 0.5, k)q+0,s &P

“+05(i,j + 0.5, k + 0.5)‘ [hX

— h~+05(i, j + 0.5, k – 0.5)]

&
[h$+o’(i – 0.5, j + 0.5, k)

+ eoe,(i, j + 0.5, k)

- h~+05(i + 0.5, j + 0.5, k)] (A8)
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e~+’(i, j, k + 0.5)

(= ~ _ u(i, j, k + 0.5) &

)
e$(i, j, k + 0.5)

Cot,(i, j, k + 0.5)

&
+

EoE,(i, j, k + 0.5) 6X

“ [h~+o’(i + 0.5, j, k + 0,5)

— h;+05(i – 0.5, j, k + 0.5)1

&
+

Eoe, (i, j, k + 0.5) &

“ [h: ’05 (i, j – 0.5, k + 0.5)

— h~+05(i, j + 0.5, k + 0.5)] (A9)

h~+05(i, j + 0.5, k + 0.5)

= hl-o-’(i, j + 0.5, k + 0.5)

-:(&++)e’(i5jk+005°
‘Kae’(i’+’k’o’)

&
+ [e~(i, j + 0.5, k + 1)

PO a@rJ +0.5

– e~(i, j + 0.5, k)] (A1O)

h~+05(i + 0.5, j, k + 0.5)

= l. f-o”s(i + 0.5, j, k + 0.5)

&
+— [e~(i + 0.5, j, k)

/Lorj (30

– ej!(i + 0,5, j, k + 1)]

+ a[e$(i + l,j, k + 0.5)

— e~(i, j, k + 0.5)]

h~+o’(i + 0.5, j + 0.5, k)

= h~-os(i + 0.5, j + 0.5, k)

+ ~ [e~(i, j -t 0.5, k)
/lo 6X

– e~(i + l,j + 0.5, k)]

(Al 1)

+ -& [e~(i + 0.5, j + 1, k)

– e~(i + 0.5, j, k)] (A12)

where & is the elementary time-step, 6x, & and &$ are
the elementary spatial steps in the x-, r- and ~-direction
(see Fig. 4); ri is the distance from the bottom of cell (i,

j, k) to the origin of the cylindrical coordinate system;
IJ(i, j, k) and C,(i, j, k) are the conductivity and the rela-
tive dielectric constant of the material at coordinates (i 6x,

j&, k &#).

APPENDIX III

The solutions obtained with the FDTD-scheme satisfy
the zero divergence constraints. To prove this we start
from the Maxwell time-dependent curl equations (1)
which lead to the FDTD-scheme if we introduce the fol-
lowing approximations for the partial derivatives. Let~(x,
y, z, t) be a general field component. After discretization,
we denote:

f(i 8, j 6, k 8, n&) = fn(i, j, k). (A13)

In the FDTD-method, the derivatives are approximated
by the second order finite-difference equations. For in-
stance:

+f(x, y, z, t)+

fn(i + 0.5, j, k) - fn(i – 0.5, j, k)

6

= AX,f “(i, j, k) (A14)

and

~n-~os(i, j, k) – fn-05(i – 0..5, j, k)
—

&

= At~”(i, j, k) (A15)

Using this notation we can write the finite-difference
equa~ons of the FDTD-scheme as

At (p(hXuX + hyuy + h, U,))

r
Ux Uy Uz1

—— 11–Axe=– AX AYAZ

eX eY eZ

and

fit (e(e. u. + ey ZJy

=Ax~=

t e, u,))

u.
UY Uz

AX AJ AZ
1

(A16)

(A17)

We now prove that the solutions obtained with (A16) and
(A17) satisfy the discrete divergence equations:

A “ (a?) ❑= AX(~e,) + AY(~eY) + AZ(~e,) = O

(A18)
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and

A “ (/-Lb) = A.(ph,) + AY(phY) + AZ(phZ) = O.

We start for instance from (A16)

poAth=– Axe

and let the A-operator work on both sides of

~oA”(A, h)=–A. (Axe)

or

A o (A, (ph))

(A19)

(A20)

A20) :

(A21)

—— –A - ((Aye, – Azey)u. – (Axe, – AZeX)uY

+ (AXeY– AYe,)z.q)

= –(AXAYeZ – AXAZeY– AYAXeZ+ AYAZeX

+ AZAXeY– AZAYeX). (A22)

It can be easily checked that we can exchange the
A-operators. If we do this we get from (A22) that

A,(A “ (pl’z)) = O (A23)

which means that

A “ (Ph) (A24)

is constant as a function of time. Since at the beginning
of the simulation, all field components are identical to
zero, we have proven that -

A “ (~h) = O.

In a similar way, starting from (A17),
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